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Abstract

Recently, there has been substantial interest in the large-scale synthesis of hierarchically
architectured transition metal dichalcogenides and designing electrodes for energy conversion
and storage applications such as electrocatalysis, rechargeable batteries, and supercapacitors.
Here we report a novel hybrid laser-assisted micro/nanopatterning and sulfurization method for
rapid manufacturing of hierarchically architectured molybdenum disulfide (MoS,) layers
directly on molybdenum sheets. This laser surface structuring not only provides the ability to
design specific micro/nanostructured patterns but also significantly enhances the crystal

growth kinetics. Micro and nanoscale characterization methods are employed to study the
morphological, structural, and atomistic characteristics of the formed crystals at various laser
processing and crystal growth conditions. To compare the performance characteristics of the
laser-structured and unstructured samples, Li-ion battery cells are fabricated and their energy
storage capacity is measured. The hierarchically architectured MoS, crystals show higher
performance with specific capacities of about 10 mAh cm™2, at a current rate of 0.1 mA cm ™2,
This rapid laser patterning and growth of 2D materials directly on conductive sheets may enable
the future large-scale and roll-to-roll manufacturing of energy and sensing devices.

Supplementary material for this article is available online

Keywords: 2D materials, laser manufacturing, laser patterning, energy applications,
Li-ion battery

* Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any fur-
ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT
2631-7990/22/045102+10%$33.00 1


https://doi.org/10.1088/2631-7990/ac8f73
https://orcid.org/0000-0002-6080-7450
mailto:mahjouri@auburn.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/2631-7990/ac8f73&domain=pdf&date_stamp=2022-9-20
http://dx.doi.org/10.1088/2631-7990/ac8f73
https://creativecommons.org/licenses/by/4.0/

Int. J. Extrem. Manuf. 4 (2022) 045102

P Fathi-Hafshejani et a/

1. Introduction

Transition metal dichalcogenides (TMDCs) have recently
emerged as a significant class of layered materials with a num-
ber of applications in electronics, photonics, energy storage,
catalysis, and sensing devices [1-11]. The chemical compos-
ition of TMDCs has been expressed by MX, (M = trans-
ition metal, and X = chalcogen), where the transition metal
is sandwiched in between chalcogen atoms forming a three-
atom thick two-dimensional (2D) crystalline layer. The bulk
structure of the TMDCs consists of repeating layers with weak
van der Waals bonding between the layers and strong covalent
interaction within the layers [12—15].

Among various areas of application, energy applications
such as catalysis, energy generation, and storage have been
promising areas of interest for 2D TMDC materials [16-21].
For instance, in lithium cells, transition metal sulfides (TMSs)
have been important cathode materials [16, 22-24] where the
lithium is stored in their lattices by the intercalation/dein-
tercalation processes. Molybdenum disulfide (MoS,) is one
of the promising electrode materials, among the TMSs, for
rechargeable lithium-ion batteries [23, 25-28]. The layered
structure of MoS, allows foreign molecules or ions to easily
move between the layers through the intercalation/deintercal-
ation processes [29-34].

Mono and few-layer TMDC nanosheets can be synthesized
by bottom-up atom-by-atom growth processes or top-down
mechanical and chemical exfoliation of bulk 2D materials
[22, 35-38]. In the bottom-up atom-by-atom method, TMDCs
are typically grown on different substrates (e.g. S/SiO;) using
physical or chemical vapor deposition methods [39, 40]. In
the top-down method, stacked layers are separated into few-
layer sheets using chemical and micromechanical cleavage
methods [41]. The bottom-up atom-by-atom approach is a
low yield, high cost, and time-consuming process, which
is typically used for electronic and optoelectronic applic-
ations. For instance, there are some reports on industrial
atomic layer deposition (ALD) and chemical vapour depos-
ition (CVD) approaches for the wafer-scale depositions of
TMDC’s [42, 43]. The top-down mechanical and chem-
ical exfoliation approach produces large-scale, low-cost, and
fast 2D materials that are suitable for energy applications.
However, mechanical and chemical exfoliation requires post-
processing, slurry formation, patterning, and deposition onto
conductive electrodes with reliable contact between 2D mater-
ials and metal substrates [44—47]. Therefore, large-scale, high
yield, and low-cost direct syntheses approach with control over
their structures, patterns, and interfaces are highly desired to
manufacture 2D-based electrodes for energy applications.

Lasers applications in the synthesis and processing of
2D and other related energy materials has been an attract-
ive area for large-scale, roll-to-roll, and low-cost manufac-
turing of energy devices [48-55]. Recently, laser processing
has been become an attractive tool for enhancing manu-
facturing and improving battery performance. For instance,
laser modification or ablation of electrode materials is now
used to create various patterns and structures on the elec-
trodes of the batteries [56—60]. This has directly influenced

the electrochemical properties and greatly enhanced battery
performance, including battery lifetime, high-rate capability,
and cycle stability. One of the critical issues for thick film
and high energy electrodes is improving the electrode film
adhesion, which can be possible by laser structuring [61-63].
Hence, a new battery concept has been introduced by the direct
laser structuring of electrodes for achieving large-area energy
capacities and power densities [64—67].

The wide choice of lasers with various power, energy,
and timescales (from continuous-wave to femtoseconds) has
enabled their use in many industrial-scale manufacturing sec-
tors for rapid (e.g. a few thousand mm s~!), high preci-
sion, and low-cost processing needs. Accordingly, this work
presents the use of laser processing for rapid laser pattern-
ing and large-scale manufacturing of 2D materials with high-
quality and high growth rate directly on conductive transition
metals sheets. This method has the potential to be adopted
in the future roll-to-roll industrial level energy device manu-
facturing. Besides improving the quality and growth rate, this
method offers large-scale rapid manufacturing of 2D materials
directly on the conductive transition metal substrates for future
roll-to-roll industrial level energy device manufacturing. Here,
we report a unique solution for the formation of designed pat-
terns and hierarchically architectured high-quality 2D MoS,
crystals directly on molybdenum substrates to design elec-
trodes for 3D batteries. This process combines the flexibil-
ity and advantages of the laser structuring method to cre-
ate micro/nanostructures on molybdenum substrates, followed
by sulfurization and the growth of high-quality MoS, crys-
tals in the patterned structures. The laser micro/nanopatterning
provides the ability to design desired architectures and chan-
nels on the substrates and highly enhances the sulfur diffu-
sion and crystal growth kinetics resulting in high yield growth
of 2D crystals. Moreover, since the 2D crystals grow directly
from and penetrate into the conductive substrate (Mo), there is
a natural chemical bond between the 2D material and the sub-
strate that eliminates the use of a binder for adhesion. Thus
this method could be more resilient to bending. We show that
the crystals are, in fact, pure with the desired quality and with
suitable battery performance characteristics.

2. Results and discussion

2.1. Growth of hierarchically architectured 2D MoS; crystals

As shown in figure 1, to create designed patterns with con-
trolled architectures and dimensions, molybdenum substrates
(99.9% purity) were precisely laser structured (see Supple-
mentary data) in an argon environment to avoid unwanted
chemical reactions and oxidation. The laser-structured sub-
strates were then controllably sulfurized inside a tube furnace
under atmospheric argon pressure and at various temperatures.
After loading the samples and sulfur boat into the tube fur-
nace, first, the tube was vacuumed down to ~1 mtorr, followed
by argon purging for a few minutes. Then the tube was filled
with 500 mtorr of argon, and the sulfurization processes were
studied under various temperatures (e.g. 400 °C—900 °C) and
time. The sulfurization was achieved by evaporating 10 mg
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Figure 1. Schematic a hybrid method for non-coating fabrication of substrate grown MoS, growing directly from Mo substrate with laser
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Figure 2. Low and high magnification SEM images showing the morphology of synthesized MoS, in different sulfurization temperatures.
The MoS; sulfurized at 400 °C (a), 500 °C (b), 600 °C (c), 700 °C (d), 800 °C (e), and 900 °C (f). The popcorn analogy is used to
demonstrate the temperature-dependent evolution of the MoS, growth in the process.

of sulfur powder in the low-temperature zone of the fur-
nace. The furnace temperature helps dissociate the vapor-
ized sulfur molecules to smaller chemically activate S spe-
cies. The large sulfur molecules such as Sg, S7, and Sg are
the dominant species in the vapor at low temperatures of about
150 °C. However, at relatively temperatures above 500 °C, the
smaller molecules such as S4, S3, and S, become dominant
[68, 69]. Therefore, the sulfur vapor close to the samples
zone are expected to be a highly reactive smaller species that
can diffuse into the molybdenum substrate and form MoS,
structures.

In order to verify the temperature effect on the forma-
tion of MoS, crystals, different sulfurization temperatures
ranging from 400 °C to 1000 °C were tested. The sur-
face morphologies and physical structures of the synthesized
MoS, samples were studied using a profilometer (see Supple-
mentary data) and scanning electron microscopy (SEM). As
shown in figure 2, the SEM images of the samples revealed

a popcorn-like growth evolution of the MoS, crystals as a
function of substrate temperatures. When the temperature
increases, sulfur species highly react with Mo and diffuse far
inside the microstructures. Since the density of Mo is almost
twice the density of MoS,, the MoS, will need twice the space
of Mo. Thus, it begins to crack the microstructure and expand
outward.

For instance, the initial sign of MoS, growth was observed
at 400 °C. As the temperature was increased for a constant
reaction time of 10 min, molybdenum structures started crack-
ing, and larger MoS, flakes started springing out. At 700 and
800 °C large flower-like MoS, crystals were formed, cov-
ering the entire structure. The higher sample temperatures
(i.e. 900 °C and 1000 °C) provided both higher thermal energy
for diffusion during the sulfurization process and increased
the reactive S species resulting in the enhanced growth of the
crystals. The growth was so high that the microstructures and
microchannels on the substrates disappeared. However, signs
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Figure 3. Low (a) and high (b) magnification SEM images of MoS, synthesized at 800 °C on a substrate with half laser-structured and the
other half unstructured. Laser surface structuring not only provides flexibility in designing the desired structures but also enhances the

sulfurization and growth processes.

of decompositions and degradation of MoS, crystals were
observed in TEM images (see Supplementary data) when the
temperature was increased to 900 °C and beyond.

The micro/nanostructures formed by the laser processing
significantly increase the surface area for sulfur interaction and
diffusion, leading to more sulfurization and MoS, growth than
in unstructured regions. To show how laser structuring makes
a huge difference in the sulfurization and enhanced growth
of MoS, crystals and confirm our hypotheses, we compared
the growth of MoS; crystals on both laser-structured and
unstructured molybdenum substrates side by side. To per-
form this experiment, half of a molybdenum substrate was
laser patterned, and the other half was kept intact. The sample
was then loaded into the tube furnace, and MoS, growth
was performed at 800 °C. As shown in figure 3, the laser-
structured regions showed a much higher growth rate than the
unstructured region. The unstructured region only formed a
few-layer coating on the surface, while the laser-structured
region experienced enhanced growth with flower-like
structures.

To assess the quality and structure of the synthesized
MoS,; crystals at different temperatures, samples were care-
fully characterized by Raman spectroscopy and x-ray diffrac-
tion (XRD), as shown in figure 4. The Raman spectra of the
MoS,; crystals (figure 3(a)) prepared at different temperat-
ures clearly showed the in-plane (Elzg) mode at 383 cm™!
and an out-of-plane (Ajg) mode at 407 cm~'. The interval
between the Elzg and A, peaks was about 24 cm~!, similar
to the reported value for the bulk MoS, crystals. By increasing
the growth temperature, the difference between Elzg and Ay
peaks gets larger, indicating the formation of thicker layered
structures at higher temperatures [12, 70]. The asymmetric and
broad peaks at 454 cm ™! is due to the superposition of the first-
order optical phonon A2u and second-order 2LA(M) vibra-
tional modes [71, 72]. The intensity of the peaks increased for
higher temperature samples, possibly due to the higher density
of MoS, crystals grown at higher temperatures, as also con-
firmed by the SEM. At lower temperatures, since the MoS;
growth is much less and slightly covers the samples’ surface,
the Raman intensity was not as strong as the high-temperatures
grown samples.

As shown in figure 4(b), the MoS, crystals at higher
temperatures (>600 °C) show a strong diffraction peak at
260 = 14.4° corresponding to the (002) face, indicating the mul-
tilayer nature of the structures. As the temperature increases,
this peak becomes stronger, which means the number of lay-
ers has increased. Besides, other smaller peaks located at
260 = 32°, 39.5°, 58°, and 60.2° can be observed, which are
assigned to the (002), (100), (103), (110), and (008) face,
respectively (Joint Committee on Powder Diffraction Stand-
ards (JCPDS) 37-1492). If the material is monolayer or too
thin, XRD typically does not show any peaks since construct-
ive interference cannot be formed. Also, as the temperature
goes up, molybdenum peaks (at 26 = 40.6°, 58.5°, 73.7°) dis-
appear due to increased MoS, thickness. Figures 4(c) and (d)
compare the Raman and XRD spectra of the sample grown at
800 °C with and without laser structuring. The corresponding
MoS; Raman peaks at 383 and 407 cm~! (figure 4(c)) and dif-
fraction peak at 260 = 14.4° (figure 4(d)) show much stronger
intensity than the unstructured samples due to the higher
growth of the structured regions compared to the unstructured.

To gain atomistic information regarding the quality and
structure of the synthesized MoS, crystals, scanning trans-
mission electron microscopy (STEM) images we obtained and
analyzed. Figure 5 shows the STEM images of stacked MoS,
crystals synthesized at 800 °C that clearly shows the layered
nature of the material formed by a number of monolayers
attached together via van der Waals forces. The hexagonal
atomic arrangement of the Mo and S atoms is observed, con-
firming the 2H crystalline phases of the crystals, as shown in
figure 5(b). The fast Fourier transform (FFT) pattern (inset
in figure 5(b)) taken from this monolayer crystal shows a
hexagonal pattern corresponding to MoS, crystals as expec-
ted. Moreover, figure 5(c) shows the close-up view of the
atomic arrangements with well-defined hexagonal symmetry.
The brighter spots are Mo atoms, and the dimer spots are two
sulfur atoms lined up on top of each other. This is further
confirmed by the intensity profile of the crystals, as shown in
figure 5(d). It should be noted that, according to the STEM
images, samples grown at a higher temperature (e.g. 900 °C)
showed a minor sign of decomposition at the edges of the
flakes (see Supplementary data).
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Figure 4. Raman (a) and XRD (b) spectra of the grown MoS; structures on Mo samples demonstrating the evolution of the MoS; crystals at
various growth temperatures. Comparison of the Raman (c) and XRD (d) spectra of the MoS, samples grown at 800 °C on laser-structured
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Figure 5. STEM characterization of the synthesized MoS; crystals. High magnification STEM images (a), (b) and FFT of the crystal (inset
in (b)) showing highly crystalline layered materials with hexagonal crystal structures as expected for MoS;. Close-up view (c) and the

intensity line profile (d) showing Mo and 2S atoms in the crystals.

2.2. Electrochemical performance in a rechargeable Li-ion
battery

The preliminary studies of electrochemical properties of struc-
tured MoS, crystals were performed using electrodes fabric-
ated on 10 mm diameter Mo substrates. The weight of the syn-
thesized MoS, crystals on the cells was measured by weighing

the samples after the laser structuring and sulfurization pro-
cesses (three times for each sample) with 1 ug measurement
accuracy. The differences in the measured weights were basic-
ally the amount of sulfur added to the substrate during the
formation of MoS; crystals. Since there are two sulfur atoms
for each Mo atom in a unit formula of MoS,, and consider-
ing the atomic mass of Mo and S, it was possible to estimate
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Figure 6. Electrochemical measurements of the fabricated MoS, electrodes. (a) CV curves for the first 75 cycles at a scan rate of

0.2 mV s~'. (b) GCD curves of the MoS, electrode fabricated at different heat treatment temperatures. (c) Discharge capacities of
electrodes with laser structuring heat-treated at 600 °C, 700 °C, and 800 °C, and unstructured electrodes heat-treated at 700 °C. EIS of
MoS; electrodes at different sulfurization temperatures (d) without and (e) with laser structuring. (f) EIS of laser-structured and

unstructured electrodes at 800 °C.

the total MoS, weight in the fabricated electrodes. The MoS,
weight clearly increases as a function of growth temperature,
consistent with other experimental observations mentioned
above (figure S4).

The electrochemical properties of hierarchically architec-
tured MoS, crystals and the potential of fabricated films as
electrodes for Li-ion batteries or Li-ion capacitors were invest-
igated by studying the behavior of the electrodes during the
electrochemical intercalation of Li ions. We hypothesized
that the processing conditions would impact the electrochem-
ical properties of the MoS; films by affecting the electrodes’
surface area and the diffusion path of Li ions. As shown in
figure 6(a), the first discharge cycle of the cyclic voltammetry
(CV) test showed two peaks, similar to the corresponding
galvanostatic charge/discharge (GCD) curves (figure 6(b)).
As previously reported, the peak observed at 1.1 V is due
to the Li-ion insertion reaction forming LixMoS,, and the
peak at 0.6 V is related to the MoS, conversion reaction
(transformation from trigonal prisms to an octahedral phase)
[27, 73, 74]. These peaks on the discharge curve disappear
in the following cycles, and a peak corresponding to the
insertion of Li ions into the layered MoS, appears at about
1.9-2.1 V. The peak at 2.3-2.4 V in the charge curve cor-
responds to the Li extraction from the structure of layered
MoS, [74]. Figure 6(b) shows the (GCD behavior of the fab-
ricated cells with laser-structured MoS, electrodes fabricated
at different temperatures. Similar voltage profiles of differ-
ent samples for the first discharge cycle at the low current
density of 50 mA cm™2 indicate similar electrochemical

characteristics, with two discharge plateaus at around
1.1-1.4V and 0.6 V, in agreement with previous reports
[75=77]. In addition, the voltage profiles of laser-structured
samples at 700 °C, at different current densities are shown in
figure S5.

Samples fabricated at different temperatures were gal-
vanostatically cycled at different current densities. The res-
ults of cycling tests of various electrodes are presented in
figure 6(c). Comparing the specific capacity of laser-structured
vs. unstructured electrodes fabricated at 700 °C shows a sig-
nificant improvement in capacity, approximately 50%, for the
laser-structured electrode. Also, the cycling performance sig-
nificantly improved (figure 6(c)), which can be attributed to the
open channels between the MoS; layers and more space avail-
able for expansion/contraction of MoS, crystals during the
insertion/extraction of Li ions. Similar behavior was observed
for the electrodes fabricated at different temperatures with and
without laser structuring (figure S6). In addition, the results
presented in figure 6(c) show that increasing the heat treat-
ment process significantly increases the specific capacity of
the electrodes, mainly due to the higher amount of MoS, crys-
tals formed at higher temperatures.

The enhanced electrochemical performance of laser-
structured electrodes can potentially be originated from two
mechanisms. First, it can be related to the Li ion transfer paths
created by laser structuring, which facilitate the transport of
ions in and out of the electrodes. Indeed, the flake-like form
of the 2D MoS, crystals can slow down ion transport into the
bulk of the electrode, and laser structuring can significantly
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shorten the ion diffusion path by providing electrolyte access
to the MoS,; flakes and enhancing the intercalation of Li ions
between the flakes. Another possible reason is the improved
sulfurization of Mo after laser structuring, as discussed above.
The improved sulfurization increases the amount of the active
material on the Mo substrates leading to their higher specific
capacity [57, 59, 78].

Further insight into the electrochemical properties of the
electrodes was achieved through electrochemical impedance
spectroscopy (EIS). The data were obtained in 100 mHz to
1000 kHz frequency range at the open circuit potential and
using a voltage amplitude of 10 mV. Figures 6(d) and (e)
present the Nyquist plots of electrodes at various sulfuriz-
ation temperatures without and with laser structuring. The
almost vertical rise of the imaginary impedance (-Im(Z)) and
the lower impedance values at low frequencies, in agree-
ment with the results of other electrochemical tests, show
the higher capacity and ion transport properties of the laser-
structured electrodes. However, the Nyquist plots also show
the appearance of semi-circle features at higher frequencies
for laser-structures electrodes that do not exist for the elec-
trodes without structuring. This semi-circle feature is asso-
ciated with charge transfer resistance of the electrodes. This
is because laser-structuring improves the ion accessibility of
MoS, flakes, and the charge storage is based on the intercal-
ation of the Li ions between MoS, flakes. However, for the
electrode without structuring, it appears that the charge stor-
age is limited to the surface of MoS,, and these electrodes
show a more capacitive charge mechanism. This difference
between the EIS behavior of the electrodes is highlighted in
figure 6(f), where the Nyquist plots of the electrodes heat
treated at the same temperature of 800 °C are compared. It
is worth noting that figures 6(d) and (e) show that laser struc-
turing has a more significant impact on the electrochemical
performance of the electrodes compared to the heat treatment
temperature.

3. Conclusion

In conclusion, we demonstrated a unique hybrid laser-assisted
structuring and sulfurization method for the formation of hier-
archically architectured high-quality 2D MoS, crystal dir-
ectly on molybdenum substrates. This work verified that laser
structuring significantly enhances the sulfurization and MoS,
growth rate and enables morphological control over the syn-
thesis of MoS, crystals. We also showed the effect of sulfur-
ization temperatures on the formation and the quality of the
MoS; crystals. The SEM images of the MoS, crystals showed
a popcorn-like growth evolution as a function of sulfuriza-
tion temperature. The energy storage capability of the samples
was tested by preparing Li-ion cells and measuring their per-
formance. The MoS; nanosheets show the specific capacities
of 10 mAh cm~2, at a current rate of 0.1 mA cm~2, prov-
ing the effectiveness of laser structuring in enhancing the Li
storage properties of fabricated MoS; electrodes. This rapid
laser patterning and large-scale manufacturing of 2D mater-
ials directly on conductive sheets enable their application in

future roll-to-roll industrial level energy and sensing device
manufacturing.

4. Experimental

4.1 Laser structuring of the molybdenum surface

First, 0.5 mm thick Mo foil (0.25 mm thick, annealed, 99.95%)
was cut into small disks of 10 mm in diameter and ultrason-
ically cleaned in acetone and methanol for 10 min. Then, the
Mo disks were precisely structured by a 130 W tunable nano-
second fiber laser (SPI RedEnergy, wavelength = 1064 nm,
pulse-width = 5 ns—2000 ns, repetition rate = 1 Hz—4 MHz)
under argon atmosphere pressure to prevent unwanted chem-
ical reactions and oxidation. A scanning galvanometer with an
F-theta lens (~12 pm spot size) and a designated software was
used to control the laser scanning patterns. In the laser pro-
cessing step, the goal was to create a deep and neat structure
for proof of concept. Thus, various parameters such as power,
speed, and pulse duration were tested to reach the desired abla-
tion rates and structures. A scan speed of 1000 mm s~ !, laser
power of 60-80 W, hatch distance 25 um, and laser pulse-
width of 508 ns produced the desired structured surfaces for
this study. Our laser spot size diameter determined the laser
processing resolution at the focal point (~12 pm). Smaller
spot sizes can push the feature sizes to lower limits. To cre-
ate square patterns, vertical and horizontal lines were laser
scanned on the surface with desired sizes and periodicities.
For deeper structures, the laser scanning process was repeated
a few times on the same pattern. After the laser structuring,
samples were ultrasonically cleaned in acetone and methanol
for 10 min to remove the loose laser-generated coating from
the surface. It should be noted that shorter pulse-width lasers
such as femtosecond and picosecond lasers could be more effi-
cient for surface structuring and future upscaling and are worth
the investigation.

4.2. Sulfurization and MoS; crystal growth

Prepared Mo samples were placed inside a 1-inch tube furnace.
First, the system was pumped down to a few millitorrs and
argon gas was used to purge the tube and remove the residual
molecules. Then the pressure was raised to about 500 torr by
backfilling argon gas into the tube. The temperature was set
to the desired growth temperatures (400 °C-1000 °C). Solid
sulfur granules (99.9995%) were located at the beginning of
the quartz tube with the temperature of about 150 °C to slowly
evaporate the sulfur. The evaporated sulfur then reaches the
Mo substrates near the center of the tube furnace and reacts
with Mo to grow MoS, crystals for the desired time. Finally,
the system was turned off and naturally cooled down to room
temperature.

4.3. Characterization

4.3.1. Raman spectroscopy. A home-built confocal
Raman machine with a Horiba HR spectrometer and
1200 grooves mm ! grating was used for optical spectroscopy.



Int. J. Extrem. Manuf. 4 (2022) 045102

P Fathi-Hafshejani et a/

A 50x microscope objective lens (numerical apperture
(NA) = 0.75) and a 532 nm laser were used for data
acquisition.

4.3.2. XRD measurements.  Powder XRD (D8 Discover
XRD system) was used to further verify the formation of
crystalline MoS; in these experiments. Scans were conducted
between 26 angles ranging from 0° to 90°.

4.3.3. STEM characterization. An aberration-corrected
Hitachi HD2700 STEM working at 80 kV or 120 kV was used
for imaging. The detectors inner angles were set to 70 mrad,
40 mrad and 25 mrad, corresponding to high, medium, and
low angle annular dark field imaging.

4.3.4. Measurement, analysis, and Li ion storage properties.
To analyze the electrochemical properties of samples, a stand-
ard coin cells (CR-2032, MTI, Richmond, CA, USA) were
used. The disk-shaped MoS, samples were placed on copper
current collectors and tested as working electrodes. Lithium
metal foil was used for the counter and reference electrodes
and a polypropylene membrane (Celgard, Inc., Charlotte, NC)
was used as the separator. 1M lithium hexafluorophosphate
solution in ethylene carbonate and diethylcarbonate (1.0M
LiPF6 in EC/DEC:50/50 (v/v)) was used as the electrolyte.
To conduct the CV, a potentiostat (Biologic VMP3) with a
scan rates of 0.2 mV s~! was used in these experiments. A
battery tester (LANDT, China) was used to test the coin cells
in a galvanostatic mode with a range of 0.01-3.01 V with
respect to Li.
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